35. A cargo ship is 4.2 miles from a lighthouse, and a fishing boat is 5.0 miles from the lighthouse, as shown below. The angle between the straight lines from the lighthouse to the 2 vessels is 5°. The approximate distance, in miles, from the cargo ship to the fishing boat is given by which of the following expressions?

(Note: The law of cosines states that for any triangle with vertices A, B, and C and the sides opposite those vertices with lengths a, b, and c, respectively, $c^2 = a^2 + b^2 - 2ab \cos C$.)

A.
$$\sqrt{(5.0)^2 - (4.2)^2}$$

B.
$$\sqrt{(4.2)^2 + (5.0)^2 - 2 \cdot 4.2 \cdot 5.0 \cos 5^\circ}$$

C.
$$\sqrt{(4.2)^2 + (5.0)^2 + 2 \cdot 4.2 \cdot 5.0 \cos 5^\circ}$$

D.
$$\sqrt{(4.2)^2 + (5.0)^2 - 2 \cdot 4.2 \cdot 5.0 \cos 85^\circ}$$

E.
$$\sqrt{(4.2)^2 + (5.0)^2 + 2 \cdot 4.2 \cdot 5.0 \cos 85^\circ}$$

36. Which of the following equations expresses c in terms of a for all real numbers a, b, and c such that $a^3 = b$ and $b^2 = c$?

F.
$$c = a^6$$

$$G. c = a^5$$

H.
$$c = 2a^3$$

J.
$$c = \frac{1}{2}a$$

K.
$$c = a$$

38. In the standard (x,y) coordinate plane below, the points (0,0), (10,0), (13,6), and (3,6) are the vertices of a parallelogram. What is the area, in square coordinate units, of the parallelogram?

H.
$$30\sqrt{3}$$

J.
$$30\sqrt{5}$$

K.
$$60\sqrt{5}$$

41.
$$\left(\frac{1}{2}x - y\right)^2 = ?$$

A.
$$\frac{1}{4}x^2 + y^2$$

B.
$$\frac{1}{4}x^2 - xy + y^2$$

C.
$$\frac{1}{2}x^2 - xy + y^2$$

D.
$$x^2 + y^2$$

E.
$$x^2 - xy + y^2$$

45. The lengths, in feet, of the sides of right triangle $\triangle ABC$ are as shown in the diagram below, with x > 0. What is the cotangent of $\angle A$, in terms of x?

A.
$$\sqrt{4-x^2}$$

$$\mathbf{B.} \quad \frac{2}{x}$$

C.
$$\frac{x}{2}$$

$$\mathbf{D.} \quad \frac{x}{\sqrt{4-x^2}}$$

$$E. \frac{\sqrt{4-x^2}}{x}$$

51. In the figure below, all line segments are either horizontal or vertical and the dimensions given are in inches. What is the perimeter, in inches, of the figure?

- **A.** 10
- **B.** 12
- **C.** 13
- D. 14E. 16
- **52.** A 6-inch-by-8-inch rectangle is inscribed in a circle as shown below. What is the area of the circle, in square inches?

- **F.** 5π **G.** 16π
- H. 25π
- J. 48π
- **K**. 96π

DO YOUR FIGURING HERE.

58. A simple pendulum consists of a small mass suspended from a string that is fixed at its upper end and has negligible mass. The length of time, t seconds, for a complete swing of a simple pendulum can be modeled by

the equation $t = 2\pi \sqrt{\frac{L}{32}}$, where L is the length, in

feet, of the string. If the time required for a complete swing of Pendulum 1 is triple the time required for a complete swing of Pendulum 2, the length of Pendulum 1's string is how many times the length of Pendulum 2's string? Pendulum 2's string?

- $\frac{1}{3}$
- 3
- H.

- 60. Jennifer's best long jump distance increased by 10% from 1990 to 1991 and by 20% from 1991 to 1992. By what percent did her best long jump distance increase from 1990 to 1992?
 - 32%
 - G. 30%
 - H. 20%
 - J. 15%
 - 2%

END OF TEST 2

STOP! DO NOT TURN THE PAGE UNTIL TOLD TO DO SO. DO NOT RETURN TO THE PREVIOUS TEST.

- 60. Whenever $\frac{2\cos\alpha\sin\alpha}{\cos^2\alpha+1-\sin^2\alpha}$ is defined, it simplifies to:
 - \mathbf{F} . $\tan \alpha$
 - G. $\cot \alpha$
 - **H.** 2
 - J. $\frac{2}{\cos\alpha \sin\alpha}$
 - K. $\sin \alpha \cos \alpha$